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Abstract

In this paper i will give an extension of the known Standard-Model.The shape of the
extension is not arbitrary choosen.The shape explains gravity and more.
I show that the symmetries generated by the coxeter-element of the affine
Weyl group Ẽ8 which is the affine extension of the well known exceptional group E8 is
a candidate which explains open questions like dark matter and gravity.
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1. Introduction

The Standard Model of particle physics is the theory describing three of the four known
fundamental forces which are electromagnetic, weak and strong interactions.
The fourth known force gravity is not included until today.
In this paper i want to filling the gap and furthermore i want to show candidates for dark
matter particles. In the following text i will first explain what is a Coxeter group and what
is a Coxeter element.Then i will show how the Extendet Standard Model is produced
by a Coxeter element of the affine Weyl group Ẽ8.
Last but not least i will show a backgroundfield and a potential for the extension
which is similar to the Higgsfield and the Higgspotential.

1.1. The Extended Standard-Model short ESM

SU(5)s × SU(3)c × SU(2)L × U(1)y × SE(1)t
s...sense charges (sight, smell, touch, taste, hearing)
c...color charges (red, green, blue)
L...weak isospin
y...weak hypercharge
t...translation of speed and therefore acceleration

SU(n)...special unitaery group
U(1)...unitaery group
SE(1)...special euclidian group
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1.1.1. Deduction of the ESM by a special Coxeter element

Def.1 Coxeter group

The group is named after H.S.M. Coxeter a british mathematician (1907-2003)
Formally, a Coxeter group W can be defined as a group with the presentation

W = ⟨r1, r2, ..., rn|(rirj)mij = 1⟩ ri...reflections (1)

with mii = 1 and mij = mji ≥ 2 for i ̸= j
the condition mij = ∞ means no relation of the form (rirj)

m should be imposed.
The pair (W,S) where W is a Coxeter group with generators S = {r1, r2, ..., rn}
is called a Coxeter system.

Example:The coxeterdiagram of the affine coxetergroup Ẽ8

The reason why we use Coxeter groups which a more abstract as reflection groups is because
we want to use the results of the Coxeter theory.
This is possible because Coxeter shows that every reflection group is a Coxeter group.
Every (affine) Weyl group is a (affine) Coxeter group.

Def.2 Coxeter element

A Coxeter element is a product of all simple reflections
For example r1.r2....rn−1.rn or r2.rn−1....r1
All permutations of the simple reflections are Coxeter elements.

Def.3 Coxeter polynomial

A Coxeter polynomial for the Coxeter system (W, S) is the characteristic polynomial of a Coxeter
element.
Example 1: Coxeter polynomial of the affine Weyl group Ã2

P (λ) =
λ2 − 1

λ− 1
.(λ− 1)2 = Φ2.Φ

2
1 (2)

Eigenvalues are λ1 = −1 and λ2 = 1

Example 2: Coxeter polynomial of the affine Weyl group Ẽ8

P (λ) =
λ5 − 1

λ− 1
.
λ3 − 1

λ− 1
.
λ2 − 1

λ− 1
.(λ− 1)2 = Φ5.Φ3.Φ2.Φ

2
1 (3)

Φn are the so called cyclotomic factors because the zeropoints of such a factor
have the shape e

k2πi
n k=1,...,n-1

see References [DE01] Site 15/Section 5/Table 2
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Def.4 Coxeter number h

the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group,
hence also of a root system or its Weyl group.
For example the exceptional group E8 with Coxeter element v = r1.r2.r3.r4.r5.r6.r7.r8 with
r1, ..., r8 the generators of E8.
The Coxeter number of E8 ist 30 that means C30

e = e = identity.
There are different definitions for the Coxeter number.
Another definition of the Coxeter number is:
The dimension of the corresponding Lie algebra is n(h + 1), where n is the rank of the
Coxeter group and h is the Coxeter number.
For example the reflection group A2 where the corresponding Lie algebra is su(3) and the Lie group
is SU(3).
We know SU(3) has 8 generators which is the dimension of the Lie algebra su(3) thus
8 = n(h+ 1) = 2(h+ 1) then h = 3.

Def.5 affine Coxeter groups from the finite Coxeter groups

Suppose R is an irreducible root system of rank r>1 and let α1, . . . , αr be a collection
of simple roots. Let, also, αr+1 denote the highest root.
Then the affine Coxeter group is generated by the ordinary (linear) reflections about the
hyperplanes perpendicular to α1, . . . , αr, together with an affine reflection about a translate of the
hyperplane perpendicular to αr+1.

For example the affine Coxeter group Ã2 generated by the Coxeter group A2.

Simple roots of A2 are αu, αs , the highest root αt in red and the fundamental
domain or chamber C0 in violet.

One Coxeter element is v = s.u.t and the action of this Coxeter element v moves
the chamber C0 to v.C0.Doing it one more time the action is v2 and it moves the
chamber C0 to v2.C0.
We can see in the picture that the action of the Coxeterelement moves the chamber
along the red line Lv which is named Coxeter axis and reflect the chamber on the red line Lv.
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This is a so called glidereflection.
The double action of the Coxeter element moves the chamber the double way along
the red line Lv. Remark h=2 is the coxeternumber of Ã2.

In this representation the Coxeter element acts as an affine euclidian map
α : R2 −→ R2

x⃗ 7−→ A.x⃗+ d⃗

We set the origin anywhere on the red translationline then the map is

y⃗ = A.x⃗+ d⃗ =

(
−1 0
0 1

)
.

(
x1

x2

)
+

(
0
d

)
this is a reflection and a translation (4)

Then the augmented representation is

y1
y2
1

 =

−1 0 0
0 1 d
0 0 1

 .

x1

x2

1

 (5)

The characteristic polynomial as seen in (2) is

P (λ) =
λ2 − 1

λ− 1
.(λ− 1)2 = Φ2.Φ

2
1 (6)

Eigenvalues are λ1 = −1 and λ2 = 1
Remark: the algebraic multiplicity of λ2 is 2 and the geometric multiplicity is 1!
We name the eigenvalue λ1 which comes from the cyclotomic factor Φ2 λh a horizontal eigenvalue
because it belongs to a horizontal eigenvector a horizontal root.
This roots are orthogonal to the translation axis Lv.
In this example the eigenvector EVh to the eigenvalue λh = −1 is

EVh =

1
0
0

 (7)

Furthermore we name the eigenvalue λ2 for one time λv as vertical eigenvalue
and for one time λt as translation eigenvalue.
In this example the eigenvector to λv = λt = 1 is

EVv = EVt =

0
1
0

 (8)

More details for this see References [JM01]
What i want to show by this example is that the action of a Coxeter element (affine map in our
example) can be understood by the terms the so called cyclotomic factors Φ2.Φ

2
1 of the Coxeter

polynomial.
One Φ1 of the term Φ2

1 is responsible for the translation along the axis Lv.
The rest Φ2.Φ1 is responsible for the linear part of the affine map.
The horizontal eigenvector EVh with eigenvalue λh = −1 is the simple root of the group A1 and
therefore corresponds to su(2) (SU(2)).
The vertical eigenvector EVv with eigenvalue λv = 1 is a generator in R and therefore is corre-
sponding to u(1) (U(1)).
The translation eigenvector EVt with eigenvalue λt = 1 is the generator of translations in R and
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therefore is corresponding to the special euclidian group SE(1).

Then our total Lie algebra is su(2)⊕ u(1)⊕ R and therefore the total Lie group is

SU(2)× U(1)× SE(1)
| | |
Φ2 × Φ1 × Φ1 = Coxeter polynomial (characteristic polynomial) of Ã2

1)It is well known that the cyclotomic factor Φp is the characteristic polynomial of the
group Ap−1 if p is prime.
2)And it also well known that for the Weyl group Ap−1 the corresponding Lie algebra is su(p).
Then the eigenvalues and eigenvectors of a Coxeter element of Ẽ8 corresponds in the same
manner as above to the Lie algebra su(5)⊕ su(3)⊕ su(2)⊕ u(1)⊕R. This Lie algebra composition
generates the Lie group below which is our extended Standard model.

SU(5)× SU(3)× SU(2)× U(1)× SE(1)
| | | | |
Φ5 × Φ3 × Φ2 × Φ1 × Φ1 = Coxeter polynomial of Ẽ8 see (3)

This expands the Standard model by the components SU(5)× SE(1).

Schematic representation:

For completeness we want to show the eigenvalues and eigenvectors of the action of the
Coxeter element.Our information we got from Reference [JM01] example 11.8
The Coxeter element can be represented by an affine map.Some eigenvalues are complex therefore

α : C8 −→ C8

x⃗ 7−→ A.x⃗+ d⃗
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The translation axis Lv is

EVt = Lv =



1
1
1
1
3
−3
2
2


eigenvalue λt = 1 (9)

and the eigenvectors the simple roots of A1, A2, A4 are

set of eigenvectors EV of A1 = EVA1
= {



0
0
0
0
0
0
1
−1


} eigenvalue λv = e

2πi
2 = −1 (10)

and

EVA2
= {



0
0
0
0
1
1
0
0


,
1

2



1
1
1
1
−1
−1
−1
−1


} eigenvalues λA2(k) = e

k2πi
3 k = 1, 2 (11)

and

EVA4 = {



−1
0
1
0
0
0
0
0


,



1
0
0
−1
0
0
0
0


,



0
1
−1
0
0
0
0
0


,
1

2



−1
1
−1
−1
1
−1
−1
−1


} eigenvalues λA4(k) = e

k2πi
5 k = 1, 2, 3, 4 (12)
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2. Lagrange Density by the additional components SU(5)× SE(1)

LOQF = (Dµϕ)†(Dµϕ)−V (ϕ) (energydensity)2

OQF...OctoQuintenField

Dµϕ = (∂µ + igτijW
ij
µ + ig

′
I5B

0
µ)ϕ covariant derivation with coupling constants g, g

′

V (ϕ)...Evolution Potential on the OctoQuintenField

Similar to the Higgs mechanism where a backgroundfield the so called Higgs field with the
Higgs potential on it brakes the symmetry group SU(2)L × U(1)y down to U(1)em and
giving mass to the SU(2) bosons we want to give the SU(5) bosons mass by a backgroundfield
which we call OctoQuintenfield (OQF).The potential on it has the following shape and is called
the Evolutionpotential.More details see References [RK01].

The equation is an energydensity2 potential with speed as variable.

V (ϕ) = (
Λ.c4

8πG
)2.

(
− φ3

φ3 + 1
(
| ϕ |
c

)2 + (
| ϕ |
c

)4 − 1

φ3 + 1
(
| ϕ |
c

)8
)

(13)

speed ϕ ∈ O5 × iR8 = Octonions5 × iR8

and | ϕ | ≦ c
√
φ

| ϕ |=
√

ϕ†ϕ
c...speed of light
Λ... cosmological constant
G...gravitation constant
φ...golden mean 1, 618033...

2.1. Picture of the equation

the potential is zero on the spheres or shells
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| ϕ |= 0, | ϕ |= c and | ϕ |= c
√
φ

1) The 4 + 20 = 24 generators of the Lie algebra su(5) are

4 abelian generators and 20 non abelian generators
24 linearly independent 5×5 traceless Hermitian matrices
The four blue matrices are the abelian generators.
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0



0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0



0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0



0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 1√
3


1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0



0 0 −i 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0

 1√
6


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0



0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0



0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0



0 0 0 −i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0



0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

 1√
10


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0



0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0



0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0



0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0


For easier handling we enumerate the generators by the following map


τ11 τ21 τ31 τ41 τ51
τ12 τ22 τ32 τ42 τ52
τ13 τ23 τ33 τ43 τ53
τ14 τ24 τ34 τ44 τ54
τ15 τ25 τ35 τ45 ×

 (14)

Similar to the groups SU(2) and SU(3) the generators corresponding to vector bosons.
SU(2) 22 − 1 = 3 vector bosons are W+,W− and Z0

SU(3) 32 − 1 = 8 vector bosons are Gluons
The SU(5) 52 − 1 = 24 vector bosons we name Gloomons and the five charges we call senses.

A picture to see the similarities between SU(3) and SU(5).
Hint:the Gluons can be represented in R2 and the Gloomons in R4.Therefore it is not possible to
draw the same picture.
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Now we say that the Gloomons get a mass similar like the W+,W− and Z0 bosons by
coupling to a backgroundfield.
Instead of 2 charges we have 5 therefore it is instead of a doublet a quintet.
And instead of a complex row we use a octonionic row.Then we get a backroundfield which we
call OctoQuintenfield (short OQF).

representation of the definitionrange as (extented) octonionic vector ϕ =
(ϕ21 + iϕ0).1 +ϕ01i1 +ϕ02i2 +ϕ03i3 +ϕ21i4 +ϕ23i5 +ϕ24i6 +ϕ25i7

ϕ10.1 +(ϕ31 + iϕ1).i1 +ϕ12i2 +ϕ13i3 +ϕ32i4 +ϕ31i5 +ϕ34i6 +ϕ35i7
ϕ20.1 +ϕ21i1 +(ϕ41 + iϕ2).i2 +ϕ23i3 +ϕ42i4 +ϕ43i5 +ϕ41i6 +ϕ45i7
ϕ30.1 +ϕ31i1 +ϕ32i2 +(ϕ51 + iϕ3).i3 +ϕ52i4 +ϕ53i5 +ϕ54i6 +ϕ51i7

(ϕ00 + iϕ00).1 +(ϕ11 + iϕ11).i1 +(ϕ22 + iϕ22).i2 +(ϕ33 + iϕ33).i3 +ϕ44i4 +ϕ55i5 +ϕ66i6 +ϕ77i7

 (15)
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with ϕxx ∈ R
Dimension of the definitionrange = 5 x 8 + 8 = 48
The index xx of the ϕxx gives a map to the bosons,spacetime curvature and more.
The 19 blue DOF and one violet DOF we associate to spacetime curvature by the
following way.
The DOF’s are speed.Curvature and speed is connected by the formular which is similar to
the Bernoulli equation P = Const.v2

ϕ2.r2 =
Gℏ
c

(16)

r...radius of curvature

The equation (16) shows that if we have curvature we also have speed.Speed of what?
It’s the speed of spacetime itself.

Symmetric curvature tensor by the blue fields:

K =
c

Gℏ
.


(ϕ00 + iϕ00)

2.1.1 ϕ01ϕ10.1.i1 ϕ02ϕ20.1.i2 ϕ03ϕ30.1.i3
ϕ01ϕ10.i1.1 (ϕ11 + iϕ11)

2.i1.i1 ϕ12ϕ21.i1.i2 ϕ13ϕ31.i1.i3
ϕ02ϕ20.i2.1 ϕ12ϕ21.i2.i1 (ϕ22 + iϕ22)

2.i2.i2 ϕ23ϕ32.i2.i3
ϕ03ϕ30.i3.1 ϕ13ϕ31.i3.i1 ϕ23ϕ32.i3.i2 (ϕ33 + iϕ33)

2.i3.i3

 (17)

the factors 1, i1, i2 and i3 indicates what is curved and how it is curved.
1 stands for time,i1 for spacedirection one,i2 for spacedirection two and ,i3 for spacedirection three.
Therefore we have similar components like in the Stress Energy Tensor.The imaginaery speeds
in the diagonal makes it possible to have negative and positive curvature values.

Hint
The curvaturetensor has as component the Planck Constant which is the constant for quantum
physic.Furthermore the curvature is limited if the speed is limited by the speed of light c.

For example if ϕ00 = c and all other speeds in the tensor ϕxx = 0 then

K =
c3

Gℏ
.


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =
1

l2p


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (18)

lp...P lanck length

Now if we remove the indicators 1, i1, i2 and i3 in tensor K (17) and multiply K by c4

8πG then we
get the Energy Stress Tensor T by K

Tµν =
c4

8πG
.K =

c5

8πG2ℏ


(ϕ00 + iϕ00)

2 ϕ01ϕ10 ϕ02ϕ20 ϕ03ϕ30

ϕ01ϕ10 −(ϕ11 + iϕ11)
2 ϕ12ϕ21 ϕ13ϕ31

ϕ02ϕ20 ϕ12ϕ21 −(ϕ22 + iϕ22)
2 ϕ23ϕ32

ϕ03ϕ30 ϕ13ϕ31 ϕ23ϕ32 −(ϕ33 + iϕ33)
2

 (19)
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2.2. Calculating the kinetic part of the Lagrangian

LOQF = (Dµϕ)†(Dµϕ)− V (ϕ) (energydensity)2

Dµϕ = (∂µ + igτijW
ij
µ + ig

′
I5B

0
µ)ϕ

τij ...the su(5) generators see (14)
W ij , B0...the bosons of SU(5) and SE(1)
g, g

′
...the coupling constants

I5...5× 5 identity matrices

The vacuum expectation values VEV are similar to the Higgspotential the minimas of the
potential.With basic mathematic like Cardaniac formular and so on we can calculate
the value ϕmin see (13) where the potential is a minima.
To get the value for the minima we have to calculate the zeropoints of a cubic equation.
The real zeropoints of cubic equations comes from a rotation therefore we have an
angle αmin in the solution. I just want to give the exact result here.Details see References [W01]

ϕmin = c.sin(αmin).
4

√
4φ2

3
= c

√
φ

√
cos(

π

6
).sin(αmin) = c.δ ≈ c.0, 660464 (20)

c...speed of light
φ...golden mean 1, 618033...

αmin = arcsin(

√
cos(

arccos(
√

3
4

3
)+π

3 )) ≈ 28, 9o

αmin ≈ θW measured Weinberg angle

sin2(αmin) ≈ 0, 23347

δ = (φ cos(π6 ).cos(
arccos(

√
3
4

3
)+π

3 ))
1
2 ≈ 0, 6604642002662

We have a lot of minimas on the definitionrange the OQF exactly every point of the shape
| ϕ |=

√
ϕ†ϕ = ϕmin is a minima.

We divide the Degrees of Freedome short DOF (see 15) in two parts (we say blue and red).

ϕ =


i.ϕ0.1 +ϕ01i1 +ϕ02i2 +ϕ03i3
ϕ10.1 +i.ϕ1.i1 +ϕ12i2 +ϕ13i3
ϕ20.1 +ϕ21i1 +i.ϕ2.i2 +ϕ23i3
ϕ30.1 +ϕ31i1 +ϕ32i2 +i.ϕ3.i3
ϕ00.i.1 +(ϕ11 + iϕ11).i1 +(ϕ22 + iϕ22).i2 +(ϕ44 + iϕ44).i3

+ (21)


ϕ21.1 +ϕ21i4 +ϕ23i5 +ϕ24i6 +ϕ25i7
ϕ31.i1 +ϕ32i4 +ϕ31i5 +ϕ34i6 +ϕ35i7
ϕ41.i2 +ϕ42i4 +ϕ43i5 +ϕ41i6 +ϕ45i7
ϕ51.i3 +ϕ52i4 +ϕ53i5 +ϕ54i6 +ϕ51i7
ϕ00.1 +ϕ44i4 +ϕ55i5 +ϕ66i6 +ϕ77i7

 (22)

Now we transform like in the Higgs mechanism the violet DOF by (see 15)

ϕxx(x) → δ(c+ hxx(x)) (23)
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We see that the second (red) part looks similar to the Higgsfield only instead of 2 × 2
we have 5 × 5 fields.
Now we can use the same transformation and results like in the Higgs mechanism.
This means we transform the red part (22) to angle coordinates and the one violet in it
by ϕ00(x) → δ(c+ h00(x)) (see references [AA01] chapter D).

The local transformation on the red part then is

ϕ(x) = δ.eiτj .φ(x)j/c.


0
0
0
0

c+ h00(x)

 (24)

with sum up over index j
τj ...the su(5) generators see (14)
c...speed of light
δ...see (20)

Now we are doing the inverse gauge transformation then the goldstonebosons disappear.

ϕ(x) → ϕ(x).e−iτj .φ(x)j/c = δ


0
0
0
0

c+ h00(x)

 (25)

The total local transformation on the OQF then is (blue and red part together)

ϕ(x) =


iδ.(c+ h0).1 +ϕ01i1 +ϕ02i2 +ϕ03i3

ϕ10.1 +i.δ.(c+ h1).i1 +ϕ12i2 +ϕ13i3
ϕ20.1 +ϕ21i1 +i.δ.(c+ h2).i2 +ϕ23i3
ϕ30.1 +ϕ31i1 +ϕ32i2 +i.δ.(c+ h3).i3
i.ϕ00.1 +(ϕ11 + iϕ11).i1 +(ϕ22 + iϕ22).i2 +(ϕ44 + iϕ44).i3

+ δ.


0
0
0
0

c+ h00

 (26)

with hxx is a h(x)xx and ϕxx is a ϕ(x)xx

Then for the covariant derivation we get

Dµϕ = (∂µ + igτijW
ij
µ + ig

′
I5B

0
µ)ϕ = (27)

Dµ


i.δ.(c+ h0).1 +ϕ01i1 +ϕ02i2 +ϕ03i3

ϕ10.1 +i.δ.(c+ h1).i1 +ϕ12i2 +ϕ13i3
ϕ20.1 +ϕ21i1 +i.δ.(c+ h2).i2 +ϕ23i3
ϕ30.1 +ϕ31i1 +ϕ32i2 +i.δ.(c+ h3).i3

(δ(c+ h00) + i.ϕ00).1 +(ϕ11 + iϕ11).i1 +(ϕ22 + iϕ22).i2 +(ϕ44 + iϕ44).i3

 (28)

We are now only interested in the gauge boson masses and therefore set all hxx = ϕxx = 0 then

Dµϕ = (∂µ + igτijW
ij
µ + ig

′
I5B

0
µ)ϕ = Dµδ.c.i.


1
i1
i2
i3
−i

 = Dµ⟨ϕ⟩ (29)
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⟨ϕ⟩...ground state or vacuum expectation value short V EV

with (14) we get for

τijW
ij
µ =


V 11 W 12 − iW 21 W 13 − iW 31 W 14 − iW 41 W 15 − iW 51

W 12 + iW 21 V 22 W 23 − iW 32 W 24 − iW 42 W 25 − iW 52

W 13 + iW 31 W 23 + iW 32 V 33 W 34 − iW 43 W 35 − iW 53

W 14 + iW 41 W 24 + iW 42 W 34 + iW 43 V 44 W 45 − iW 54

W 15 + iW 51 W 25 + iW 52 W 35 + iW 53 W 45 + iW 54 V 55

 (30)

where the V’s are

V 11 = W 11 + W 22
√
3

+ W 33
√
6

+ W 44
√
10

V 22 = −W 11 + W 22
√
3

+ W 33
√
6

+ W 44
√
10

V 33 = −2W 22
√
3

+ W 33
√
6

+ W 44
√
10

V 44 = −3W 33
√
6

+ W 44
√
10

V 55 = 4W 44
√
10

The trace is zero

V 11 + V 22 + V 33 + V 44 + V 55 = 0

and someone can easy proof that

(V 11)2 + (V 22)2 + (V 33)2 + (V 44)2 + (V 55)2 = 2(W 11)2 + 2(W 22)2 + 2(W 33)2 + 2(W 44)2

Therefore the τijW
ij
µ (30) is hermitesch and traceless.

We know that hermitesch matrices are diagonalizable.

we define for i ̸= j

W ij
− :=

W ij − iW ji

√
2

and W ij
+ :=

W ij + iW ji

√
2

and Ṽ ii :=
V ii

√
2

(31)

then

τijW
ij
µ√
2

=


Ṽ 11 W 12

− W 13
− W 14

− W 15
−

W 12
+ Ṽ 22 W 23

− W 24
− W 25

−
W 13

+ W 23
+ Ṽ 33 W 34

− W 35
−

W 14
+ W 24

+ W 34
+ Ṽ 44 W 45

−
W 15

+ W 25
+ W 35

+ W 45
+ Ṽ 55

 (32)

with

Dµ⟨ϕ⟩ = (∂µ + igτijW
ij
µ + ig

′
I5B

0
µ)⟨ϕ⟩ (33)

and with (30) and (23) we get

Dµ⟨ϕ⟩ = i
√
2


gṼ 11 + g

′
B0 gW 12

− gW 13
− gW 14

− gW 15
−

gW 12
+ gṼ 22 + g

′
B0 gW 23

− gW 24
− gW 25

−
gW 13

+ gW 23
+ gṼ 33 + g

′
B0 gW 34

− gW 35
−

gW 14
+ gW 24

+ gW 34
+ gṼ 44 + g

′
B0 gW 45

−
gW 15

+ gW 25
+ gW 35

+ gW 45
+ gṼ 55 + g

′
B0

 .δ.c.i


1
i1
i2
i3
−i

 (34)
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then

Dµ⟨ϕ⟩ = i
√
2δ.c.i.


1.(gṼ 11 + g

′
B0) + i1.gW

12
− + i2.gW

13
− + i3.gW

14
− − i.gW 15

−
1.gW 12

+ + i1.(gṼ
22 + g

′
B0) + i2.gW

23
− + i3.gW

24
− − i.gW 25

−
1.gW 13

+ + i1.gW
23
+ + i2.(gṼ

33 + g
′
B0) + i3.gW

34
− − i.gW 35

−
1.gW 14

+ + i1.gW
24
+ + i2.gW

34
+ + i3.(gṼ

44 + g
′
B0)− i.gW 45

−
1.gW 15

+ + i1.gW
25
+ + i2.gW

35
+ + i3.gW

45
+ − i.(gṼ 55 + g

′
B0)

 (35)

and

(Dµ⟨ϕ⟩)† = −i
√
2δ.c.(−i).


1.(gṼ 11 + g

′
B0) + i1.gW

12
+ + i2.gW

13
+ + i3.gW

14
+ − i.gW 15

+

1.gW 12
− + i1.(gṼ

22 + g
′
B0) + i2.gW

23
+ + i3.gW

24
+ − i.gW 25

+

1.gW 13
− + i1.gW

23
− + i2.(gṼ

33 + g
′
B0) + i3.gW

34
+ − i.gW 35

+

1.gW 14
− + i1.gW

24
− + i2.gW

34
− + i3.(gṼ

44 + g
′
B0)− i.gW 45

+

1.gW 15
− + i1.gW

25
− + i2.gW

35
− + i3.gW

45
− − i.(gṼ 55 + g

′
B0)


T

(36)

then

(Dµ⟨ϕ⟩)†(Dµ⟨ϕ⟩) =
= 2.c2.δ2.[(1.(gṼ 11 + g

′
B0)− i1.gW

12
+ − i2.gW

13
+ − i3.gW

14
+ + i.gW 15

+ ).

(1.(gṼ 11 + g
′
B0) + i1.gW

12
− + i2.gW

13
− + i3.gW

14
− − i.gW 15

− ) + ...] =

= 2.c2.δ2.[(gṼ 11 + g
′
B0)2 + (gṼ 22 + g

′
B0)2 + (gṼ 33 + g

′
B0)2 + (gṼ 44 + g

′
B0)2 + (gṼ 55 + g

′
B0)2

+g22W 12
− .W 12

+ + g22W 13
− .W 13

+ + ...]

with W ij
− .W ij

+ =
∣∣∣W ij

−

∣∣∣2 =
∣∣∣W ij

+

∣∣∣2 for 1 ⩽ i < j ⩽ 5

(Dµ⟨ϕ⟩)†(Dµ⟨ϕ⟩) = 2.c2.δ2.[
∑

1⩽i⩽5

(gṼ ii + g
′
B0)2 + g2.

∑
1⩽i<j⩽5

∣∣∣W ij
−

∣∣∣2 + ∣∣∣W ij
+

∣∣∣2] (37)

with

∑
1⩽i⩽5

(gṼ ii + g
′
B0)2 =

∑
1⩽i⩽5

g2(Ṽ ii)2 +
∑

1⩽i⩽5

2g.g
′
.Ṽ ii.B0 +

∑
1⩽i⩽5

g
′2(B0)2 (38)

and
∑

1⩽i⩽5

V ii = 0 see after (30)

∑
1⩽i⩽5

(gṼ ii + g
′
B0)2 =

∑
1⩽i⩽5

g2(Ṽ ii)2 +
∑

1⩽i⩽5

g
′2(B0)2 (39)

and with
∑

1⩽i⩽5

(V ii)2 = 2(W 11)2 + 2(W 22)2 + 2(W 33)2 + 2(W 44)2 see after (30)

∑
1⩽i⩽5

(gṼ ii + g
′
B0)2 = g2

∣∣W 11
∣∣2 + g2

∣∣W 22
∣∣2 + g2

∣∣W 33
∣∣2 + g2

∣∣W 44
∣∣2 + ∑

1⩽i⩽5

g
′2(B0)2 (40)
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then (37) is in total

(Dµ⟨ϕ⟩)†(Dµ⟨ϕ⟩) = 2g2.c2.δ2.

(
∣∣W 12

−
∣∣2 + ∣∣W 12

+

∣∣2 + ∣∣W 13
−
∣∣2 + ∣∣W 13

+

∣∣2 +∣∣W 14
−
∣∣2 + ∣∣W 14

+

∣∣2 + ∣∣W 15
−
∣∣2 + ∣∣W 15

+

∣∣2 +∣∣W 23
−
∣∣2 + ∣∣W 23

+

∣∣2 + ∣∣W 24
−
∣∣2 + ∣∣W 24

+

∣∣2 +∣∣W 25
−
∣∣2 + ∣∣W 25

+

∣∣2 + ∣∣W 34
−
∣∣2 + ∣∣W 34

+

∣∣2 +∣∣W 35
−
∣∣2 + ∣∣W 35

+

∣∣2 + ∣∣W 45
−
∣∣2 + ∣∣W 45

+

∣∣2 +∣∣W 11
∣∣2 + ∣∣W 22

∣∣2 + ∣∣W 33
∣∣2 + ∣∣W 44

∣∣2) + 10g
′2.c2.δ2.

∣∣B0
∣∣2

c...speed of light
δ...see (20)

If B0 is directly the Graviton then it has no mass or massdensity and then g
′
= 0

If g
′
<> 0 then the Graviton must be like in the Elektro Weak Theory a mixing of

B0 and the neutral W ii.

Now what does the factor 2g2.c2.δ2 in front of the above equation mean?
We know g is the couplingstrength and c2.δ2 is the squared speed value of the miniumum of
the potential.Means ϕ2

min = c2.δ2

Further we know g.c.δ.
∣∣W ij

∣∣ is an energydensity.
If g is dimensionless (gauge theory) then

∣∣W ij
∣∣ is consequently a pulse density.

2.3. Taking the Evolutionpotential as a characteristic polynomial of a linear map

We can write the Evolutionpotential EP (13) by factorization as characteristical polynomial.
For simplification we set the speed of light c=1 then

V (ϕ) = −(
Λ

8πG
)2.

1

φ3 + 1
.(| ϕ |2 −02).(| ϕ |2 −12).(| ϕ |2 −√

φ
2
).(| ϕ |2 +φ2) (41)

| ϕ |= 0 and | ϕ |= 1 and | ϕ |= √
φ are the zeropoints.

To see the connection to a linear map we write it as determinant

V (ϕ) = −(
Λ

8πG
)2.

1

φ3 + 1
.

∣∣∣∣∣∣∣∣
| ϕ |2 −02 0 0 0

0 | ϕ |2 −12 0 0

0 0 | ϕ |2 −√
φ2 0

0 0 0 | ϕ |2 +φ2

∣∣∣∣∣∣∣∣ (42)

then

V (ϕ) = −(
Λ

8πG
)2.

1

φ3 + 1
.det(| ϕ |2 .I −M) (43)

with I is the unit matrices and M is the matrices for the linear map.

M =


0 0 0 0
0 1 0 0
0 0 φ 0
0 0 0 −φ2

 (44)
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M is traceless and the eigenvalues of M are 0, 1, φ,−φ2 which are squared speeds.
For the eigenvalues 0, 1, φ we have real speeds 0, 1,

√
φ and for the eigenvalue −φ2 we have a

imaginaery speed iφ.
So the speed of light c= 1 appears naturally as the root of an eigenvalue.
Furthermore by the trace of M we get

12 +
√
φ
2 − φ2 = 0 ⇔ 12 +

√
φ
2
= φ2 (45)

This picture shows the speed of light as a geometrical result of other speeds
(squareroot of the eigenvalues of M). This triangle in picture (45) is the so called Kepler triangle.
But the physical appearance of the other speeds φ and √

φ is actually unknown.

3. Conclusion

This paper is just a beginning of understanding Dark Matter and Gravity.
Candidates for Dark Matter are the vectorbosons W of the SU(5) symmetry and
B0 of the SE(1) symmetry is a candidate for a Graviton.In our picture a Graviton is a particle
which is raising the speed of spacetime floating because spacetime curvature is in direct relation
to spacetime floating.See (16).Still many questions remain unanswered in this paper.
For example:
Is there a relation between the Evolutionpotential EP (13) and the Higgspotential HP?
If there is a relation between EP and HP then is the angle αmin (20) the Weinberg angle?
Is the mass of the SU(5) vectorbosons the Planckmass?
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